Characterization of lpa(2) (Edg4) and lpa(1)/lpa(2) (Edg2/Edg4) lysophosphatidic acid receptor knockout mice: signaling deficits without obvious phenotypic abnormality attributable to lpa(2).
نویسندگان
چکیده
Lysophosphatidic acid (LPA), a bioactive lipid produced by several cell types including postmitotic neurons and activated platelets, is thought to be involved in various biological processes, including brain development. Three cognate G protein-coupled receptors encoded by lpa(1)/lp(A1)/Edg-2/Gpcr26, lpa(2)/lp(A2)/Edg-4, and lpa(3)/lp(A3)/Edg-7 mediate the cellular effects of LPA. We have previously shown that deletion of lpa(1) in mice results in craniofacial dysmorphism, semilethality due to defective suckling behavior, and generation of a small fraction of pups with frontal hematoma. To further investigate the role of these receptors and LPA signaling in the organism, we deleted lpa(2) in mice. Homozygous knockout (lpa(2)((-/-))) mice were born at the expected frequency and displayed no obvious phenotypic abnormalities. Intercrosses allowed generation of lpa(1)((-/-)) lpa(2)((-/-)) double knockout mice, which displayed no additional phenotypic abnormalities relative to lpa(1)((-/-)) mice except for an increased incidence of perinatal frontal hematoma. Histological analyses of lpa(1)((-/-)) lpa(2)((-/-)) embryonic cerebral cortices did not reveal obvious differences in the proliferating cell population. However, many LPA-induced responses, including phospholipase C activation, Ca(2+) mobilization, adenylyl cyclase activation, proliferation, JNK activation, Akt activation, and stress fiber formation, were absent or severely reduced in embryonic fibroblasts derived from lpa(1)((-/-)) lpa(2)((-/-)) mice. Except for adenylyl cyclase activation [which was nearly abolished in lpa(1)((-/-)) fibroblasts], these responses were only partially affected in lpa(1)((-/-)) and lpa(2)((-/-)) fibroblasts. Thus, although LPA(2) is not essential for normal mouse development, it does act redundantly with LPA(1) to mediate most LPA responses in fibroblasts.
منابع مشابه
Molecular cloning and characterization of a novel human G-protein-coupled receptor, EDG7, for lysophosphatidic acid.
Lysophosphatidic acid (LPA), together with sphingosine 1-phosphate, is a bioactive lipid mediator that acts on G-protein-coupled receptors to evoke multiple cellular responses, including Ca(2+) mobilization, modulation of adenylyl cyclase, and mitogen-activated protein (MAP) kinase activation. In this study, we isolated a human cDNA encoding a novel G-protein-coupled receptor, designated EDG7, ...
متن کاملEDG receptors and hepatic pathophysiology of LPA and S1P: EDG-ology of liver injury.
The biological roles of phospholipid growth factors lysophosphatidic acid (LPA) and sphingosine-1-phosphate (S1P) have been broadly investigated. The cellular effects of LPA and S1P are mediated predominantly via endothelial differentiation gene (EDG) receptors. Yet, the biological significance of LPA, S1P and their EDG receptors in cells of the liver remains unclear. Recent data demonstrate th...
متن کاملLysophosphatidic acid induction of vascular endothelial growth factor expression in human ovarian cancer cells.
BACKGROUND Lysophosphatidic acid (LPA) stimulates ovarian tumor growth at concentrations present in ascitic fluid. Vascular endothelial growth factor (VEGF) stimulates angiogenesis and plays a pivotal role in the formation of ovarian cancer-associated ascites. We examined whether LPA promotes ovarian tumor growth by increasing angiogenesis via VEGF. METHODS VEGF expression was examined in a s...
متن کاملLysophosphatidic acid receptors.
Lysophosphatidic acid (LPA) is a simple bioactive phospholipid with diverse physiological actions on many cell types. LPA induces proliferative and/or morphological effects and has been proposed to be involved in biologically important processes including neurogenesis, myelination, angiogenesis, wound healing, and cancer progression. LPA acts through specific G protein-coupled, seven-transmembr...
متن کاملExpression and function of lysophosphatidic acid receptors in cultured rodent microglial cells.
Microglia are the resident tissue macrophages of the central nervous system. They are rapidly activated by a variety of insults; and recently, receptors linked to cytoplasmic Ca(2+) signals have been implicated in such events. One potential class of receptors are those recognizing lysophosphatidic acid (LPA). LPA is a phospholipid signaling molecule that has been shown to cause multiple cellula...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular and cellular biology
دوره 22 19 شماره
صفحات -
تاریخ انتشار 2002